
AD-A250 208 ET~NPG

6.Wo AUTHORm(S) 14

"'Na~~~~AFS U2. 0389M W .ItP4 O AE

3]ING)I ,D 03264

DTI
7~. OISTNIUUTORNIAIO IAI AMNT L AD IX afhlnoucoo

DISRIBTIO IS UNLIMITED I

AFOS
ABSRAC

REPORTu IOU a

Resarh..of devloin a.0g3 8f9mle FO T A o pie o h
NaiPertkes Copt (NSC)4 waIefre uig h otata

nod TheSOW thus ofIORN hE work(S as toRE5S devlo a rootpecmple te
Inioe TheC OFIENFSCMInNodeI iSEAC nt opeatina prttyehrdaeoe

11.15 NUMUEINAA NOTEAGS

1S. SEOJU CLtAWICA 19. . LTAION F ABTRAC

Research ~ OP TevloiSg PaG hihefracOR BTRAcomieTo h

tat reprsent th key buidin blc f aale-pocsigsuecm

Research on developing a high-performance FORTRAN compiler for the
Navier-Stokes Compute (NSC) was performed during the contractual pe-
riod. The thrust of the work was to develop a prototype compiler the NSC
MiniNode. The NSC MiniNode is an operational prototype hardware node,
that represents the key building block of a parallel-processing supercom-
puter whose architecture was designed to support the efficient simulation of
large-scale complex fluid flows. The NSC is based on a small number of
powerful nodes, where each node running standalone is comparable in sus-
tained performance to current supercomputers. Each node has dynamically
reconfigurable internal systolic arrays (arithmetic logic structures, or ALSs)
connected via crossbar switch to multiple independent memory and address-
generation modules (memory planes). Three kinds of ALSs can be used in
the node: singlets with one floating-point unit, doublets with two floating-
point units, and triplets with three. These computational and storage as-
sets support the multiple levels of parallelism required for efficient solution
of most numerical forms of the Navier Stokes Equations. The ALSs alone
provide fine-grained support, while the node as a whole represents medium-
grain hardware parallelism. Multiple nodes that are interconnected provide
coarse-grain svipport for global domain decomposition. Overall, the architec-
ture may be described as a continually reconfigurable Very Long Instruction
Word (VLIW) machine.

The number of memory and ALS assets are used to categorize NSC nodes
of various sizes. The convention is to specify the number of singlets, doublets,
and triplets and memory planes in a node. Thus, an x:y:z/m configuration
has x singlets, y doublets, and z triplets with m memory planes. At present,
the prototype MiniNode exists in hardware at Princeton University, and has a
0:2:2/4 configuration (i.e. two doublets, two triplets - 10 total floating-point
units - and 4 memory planes).

A generic prototype compiler to efficiently port code to the NSC was
studied for sitability in specifically compiling FORTRAN code for the NSC
MiniNode. The compiler accepts unmodified 'dusty deck' ANSI FORTRAN 77
source code and optimizes variable storage in memory to minimize refer-
ence conflicts, and maximizes the average number of floating-point and in-
teger/logic processors utilized over the course of a flow simulation. This
compiler has several novel features in the general area of compiler design.
These features include:

2 92-12996

92) i j|

1. direct creation of dependency graphs from the unmodified source code,

2. high-level approximate modelling of various elements of the target com-
puter architecture (in this case, the NSC), a short list of which includes:

(a) memory address computation unit,

(b) memory plane and cache architecture, size and update/replacement
algorithms,

(c) ALS external and internal data paths, registers and execution
modelling,

3. perfe ance prediction of candidate code fragments produced by the
complier using the models from Item 1 above to provide feedback to
the compiler during optimization, and

4. heuristics aimed at recognizing and efficiently implementing computa-
tional constructs frequently encountered in CFD algorithms (such as
linear matrix operations, FFTs, conditional evaluations for numerical
stability, etc.).

The compiler is parameterized, and is dubbed a Parameterized Memory/Processor
(PMP) optimizing compiler. The basic features of a parallel computer ar-
chitecture, such as the number, type, and behavior of memory, processors,
registers, control stores, and their interconnections and couplings, are param-
eterized. This permits the study of the suitability of existing and proposed
parallel computers in handling large scientific codes. It also provides a means
by which architectural variations may improve performance, such as the ad-
dition of additional ports to memory for example.

It was determined that the compiler is indeed suitable for the NSC MiniN-
ode, and that it may be used, with further development, to port large 'pro-
duction' CFD5 codes to the full multinode NSC. This is the subject of ongoing
AFOSR-supported research, and is expected to culminate with hardware and
software CFD-code demonstrations on a multinode NSC. E

Several of the key research results are presented in the attached preprint El
which will appear in the Proceedings of the 1992 Scalable High Performance
Computing Conference, IEEE Computer Society Press.

h Availability Codes

3 Avail and for
Dist Special

A-1~ L

Parameterized Memory/Processor Optimizing FORTRAN
Compiler for Parallel Computers

Daniel M. Nosenchuck
Department of Mechanical and Aerospace Engineering

Princeton University
Princeton, New Jersey 08544

Abstract The compiler automates and optimizes domain de-
A new approach to generating low-conflict, parallel composition and parallel code generation, is general

instructions for complez applications is introduced in in nature (i.e. not restricted to the NSC architecture),
this paper. This method is presented within the contezt and is dubbed a parameterized memory/processor
of a FORTRAN compiler. An approzimate simulator (PMP) optimizing FORTRAN Compiler, or PMPC.
has been incorporated within a parallel-code/ domain- A specific implementation on the NSC has been made.
decomposition loop within the compiler. The simula- This new compiler architecture followed largely in
tor estimates the performance of candidate instruction part from years of experience hand-coding applica-
segments, and guides the selection of appropriate code tions on the NSC using low-level tools. Initial develop-
transformations, heuristics, and data storage strate- ment followed from attempted automation of both the
gies. At present, many aspects of the target machine routine and the creative aspects of manual, low-level
are parameterized, to permit investigations of a num- programming.
ber of parallel-computer architectures. In this paper,
the compiler is illustrated for a Navier-Stokes Com- 2 Overview of Novel PMPC Elements
puter target node application. 2.1 Compile-time Simulation

While most scientific applications are inherently
rich in parallelism, a careful balance must be struck

1 Introduction between the formation of parallel code and the forma-
The generation of efficient code coupled with au- tion and distribution of data structures. This ensures

tomatic data decomposition remains one of the key that subsequent data access does not result in a large
unsolved problems in parallel computing. Large-scale number of conflicts, decreasing the performance of the
scientific simulations require partitioning of massive target machine. Since many potential conflicts cannot
data arrays, often with complex structure, among mul- be identified a priori, the central feature of the PMPC
tiple memory units when run on a parallel machine, is an iterative, optimizing procedure. Candidate code
For rapid throughput, parallel execution must dom- segments are formed and identified through the use
inate sequential processing. This requires code se- of basic code transformations and extensive heuris-
quences and data storage to provide nearly conflict- tics. These code-segments typically relate to scalar
ree, continuous, simultaneous data access. To date, sections, loops, subroutines, etc., and are generally

this need is generally met by distributing data via 100 source lines or less in length. The code block is
explicit directives in source code, with subsequent then tested for execution efficiency by an approzimate
compiler-generated parallel code. 'Optimization' is of- simulator module, which invokes an approximate ar-
ten by hand, in a laborious'off-line process driven by chitectural model of the target computer. The simu-
profiler output. lator is designed to run rapidly at compile time, and

The present work was motivated in part by the provides a Tough simulation of only those portions of
need to port efficiently large scientific simulation the computer that may lead to data-flow bottlenecks,
programs' to the Princeton Navier-Stokes Computer such as the memory, cache, and processor units.
(NSC)13. So-called 'production' codes are often writ- The simulator estimates performance by only sim-
ten in FORTRAN-77, or earlier versions with little ulating that portion of code which may result in am-
vectorisation and no parallel construction. The goal biguous memory references or subsequent conditional
of the compiler is to generate machine instructions tests. The domain of the simulation is constrained
from standard (unembo.llished with embedded direc- significantly to maintain adequate overall compiler
tives) FORTRAN-77 source, that would execute at a throughput. Thus, the input and initializatio'n vec-
minimum of 50% of the peak NSC speed. tors and arrays 2 represent only small subsets 3 of com-

1 An initial area ,,4 applicati,,n ,f I ,e orpilcr is c,,mpta- 'These data structureq.,,ficn represetit the initial and b,,und-
tinal fluid dynamsi (('FD). with o,-des typically c,,n.sistinV ,,f ary ccnditi,ns f a scientific simulati,,n.
lt1

- t1s.,urce lines. 3Typica||t less than IWo elements .4 a data structure which

4

plete run-time arrays. One particularly interesting re- An example of the basic WIC-statement format is
sult, discussed below in NSC Applications, is that the
statistics of the simulation were not strongly depen- Result = (Oper 1 0, Oper 2) 02 (Oper 3 E3 Oper 4)
dent on the particular makeup of the initialization ar- where 0 signifies an arbitrary high-level operation,
rays. The purpose of the simulator is to provide some such as +, -, , -, and Oper signifies a operand, ei-
guidance to the optimizer for the selection of appro- ther from memory, a register, or from the result of
priate code transformations and heuristics. The sim-
ulator is not meant to give an accurate assessment of a preceding computation. In this example, the WIC

shows the local dependencies (based on parenthetical
performance. ordering), where 0, and 03 may execute in parallel,If the estimated performance is less than a prede- with subsequent processing by 02.

termined level, the compiler is guided by the simula- To best illustrate an example of one particular em-
tor output-statistics in selecting a new code transfor- bodiment of the format of the intermediate code, con-
mation, or modifying the data storage strategy. For sie a sm e systo ve terat as cted
example, when data-access conflicts are uncovered (of- sider a simple systolic vector operation, as extracted
ten due to ambiguous data references), the simulator
outputs memory reference-, conflict- and primitive- do 11 l=1,imax
operation-counts. The derived performance estimate do 10 j =l,jmax
determines wheth-r optimization should continue on z(j)=const1*b(j)-(const2*a(i)+
the same code fragment, or if the next code segment const3*c(i,J))
should be generated and analyzed. If the performance 10 continue
is inadequate due to insufficient processor utilization 11 continue
or data conflicts, data structures can be moved or re-
distributed (based on the access patterns and conflicts The internal WIC generated for the above code is
uncovered by the simulator), and/or the code frag- shown below:
ment can be modified. Standard code transformations
along with heuristics such as loop-splitting or fusion, pOO:=$8#11RS*l#SHAI+$9#11RS*$4#84A1 %(I)
are incorporated in conjunction with data movements. ==$13#12MAI==$7#11RS*$2#6MA1-pOO %(2)

2.2 Wide Intermediate Code Format -> %(3)

The format of most scientific and other application where line (1) evaluates the parenthetical expression,
source-codes suggests the parallel and/ot systolic' ex- line (2) completes the evaluation of z (J) and the line
ecution of operations. In preserving the high-level for- (3) symbol indicates END DO. WIC uses symbol-table
mat, formation of parallel or systolic code constructs mnemonics particular to the present embodiment of
from a Wide-format Intermediate Code (dubbed WIC) the compiler for the NSC. The potential for multiple
representation is more natural than having to recon- independent memory planes is reflected in the struc-
struct such constructs from sequential code (see be- ture of the token. The format of the data-structure
low). The high-level language (FORTRAN) is trans- symbol-table tokens is described in Table 1.
lated after parsing and dependency analysis into an
internal WIC. In essence, the format of the WIC inher- Data-structure symbol-table tokens:
ently maintains local parallel and systolic constructs $! xx #mp stor occ, where:
and dependencies found in the original source code. I Symbol E lanation
The natural relationships between operand fetches,
complex intermediate operations, and result storage $ data element
are preserved within the WIC statements. A single I Scatter/multistore indicator
line of WIC code often directly follows from discrete xx variable reference number
source-code lines. The burden on subsequent analysis #mp memory plane number
to extract possible parallel or systolic implementations stor disposition of variable given by
is lessened. WIC may be c6ntrasted to ubiquitous se- MA: memory-based array
quential internal code-formats, typically characterized MS: memory-based scalar
by simple load, move, operate, store sequences. This RA: register-based delayed array
latter format places an increased burden on the paral- RS: regster-based scalar
lel code analyzer which must reconstruct many of the occ variable occurrence number
'obvious' parallel code elements that were explicit in
the original source code. Table 1: Format of Data-structure Symbol Tokens

The WIC code embodies all of the actions directed As shown in the example above, WIC is essentially
by the source program. In addition, it maintains comprised of nested interior dependency nodes (within
symbol-table attributes and local data depenaencies, the DO-loop). (The loop header code was eliminated
c,,uld range up t,- 108 -,r m',re elements. for simplicity.) Here, non-terminal internal node p00

4 Systoic execrti,,n i% -,perationaliv defined hiv onsidering indicates a systolic phrase. The phrase-break was
data streams that enter an array ,, pr,,ressiing elumenta 0,,e merely driven by the parenthetical ordering indicated
,utputs are directly fed in-, subseqtuvnt pr,,cess,,r inputs. Data in the source. The token bounded by == represents

is I um pr,,cessed in an assembly line fashi..n, with,,ut the need the root of the local dependency tree. Thus, as i-
f,,, interniediate strage. lustrated by this simple example, the WIC presents a

natural ordering of intermediate and final results that inner DO-loop code. The corresponding WIC code
lend themselves to relatively straight-forward subse- produced by the compiler is
quent analysis and parallel implementation.

Clearly, the inherited attributes can be parsed ==0.0
much finer where, in the limit, conventional sequen- ==$3#4+$I#2*$2#3+$1#2$2#3+$I#2*$2#3+$*#2$2#3
tial intermediate code, as discussed above, would re- which is then mapped on to the processors. Since it is
suit. However, this would require increased work from natural for a programmer to think of data-flow-type
the code analyzer, and might result in lower parallel architectures, sucI as the NSC, in a graphical sense,
performance relative to that expected by WIC anal- the compiler provides an optional graphical output of
ysis. It should be noted that WIC ordering does not the pipelines that are formed in the resource alloca-
significantly constrain subsequent systolic and parallel tion stage. As shown in Figure 1, the compiler out-
code generation and optimization. puts the ALS functionality and memory/processor in-
3 PMPC Implementation on the NSC terconnects ordered by the WIC:

When optimization is invoked, and the mem-
For the NSC application, a Node architecture (see ory/processor model of the target architecture indi-

[I] for example) was specified. Main parameters were cates that sufficient resources exist for parallel/vector
memory size and configurations, and internal proces- processing, as is the case for the NSC, the compiler
sor count. The NSC convention is to specify the num- begins to implement various code transformations and
ber of so-called singlets, doublets, triplets ', and mem- non-standard heuristics to maximize the use of avail-
ory planes in a node. Thus, an z:y:z/m configuration able assets, while maintaining an acceptable level 7 of
has z singlets, y doublets, and z triplets with m mem- memory conflicts. In the case of the matrix multi-
ory planes 6 . ply example given above, the compiler effectively un-

The simulator module was a small, streamlined sub- rolls the loop, after testing a numbers of code con-
set of a complete single-node NSC simulator [2]. Most structs and data mappings. (Note that this kind of
of the CFD codes that were considered required initial- loop-unrolling was not a heuristic presented to the
and boundary-condition arrays. Both specific and compiler.) The compiler then generated the follow-
generic arrays were utilized. The specific arrays con- ing code:
sisted of values appropriate to the computation, such
as the boundary of a flow domain. Generic arrays do 100 k = 1, n
were comprised of random numbers, linear counts, do 100 i = 1, 1
and/or constants. An intriguing empirical observe- c(i,k) = 0.0
tion (based thus far on limited experience) is that the 100 continue
performance estimates generated by the simulator for do 110 j = 1, m, 4
these incomplete, often physically-meaningless input do 110 k = 1, n
arrays, is that the actual performance, obtained from do 110 i = 1, 1
an exact simulation, is typically within 10% - 20% of c(i,k) = c(i,k) + a(i,J) * b(Q,k)
the estimated performance. + a(i,j+1) * b(J+1,k)
3.1 Examples + a(i,J+2) * b(J+2,k)+ a(i,J+3) * b(J+3,k)

To illustrate simple optimization and domain de- 110 continue
composition, consider the matrix multiply kernel: 0

c 4-ay unrolled matrix multiply routine 0

do 100 k = 1, n
do 100 i = 1, 1 do 400 k4 = 1, n4

c(i,k) = 0.0 do 400 i4 = 1, 14
100 continue c4(i4,k4) = 0.0

do 110 J = 1, m, -4 400 continue
do 110 k = 1, n do 410 j4 = 1, m4, 4

do 110 i = 1, 1 do 410 M = 1, n4
c(i,k) = c(i,k) + a(i,j) * b(j,k) do 410 14 = 1, 14

+ a(i,j+l) * b(j+l,k) c4(i4,k4) = c4(i4,k4)
+ a(i,J+2) * b(j+2,k) + a4(14,j4) * bJ4,k4)

1 + a(i,J+3) * b(J+3,k) + a4(i4,j4+1) * b4(j4+i,k4)
110 continue + a4(i4,j4+2) * b4(J4+2,k4)

This code was input into the compiler with opti- 410 + a4(i4,j4+3) * b4(j43,k4)
mization disabled, to illustrate the basic treatment of

As a representative example of PMPC use, the'Singlet., d-,ublets and triplets refer t, the ninher 4 optimal design of an NSC node is considered. To
fl-,ating-p-in units within a single pr,,cess.,r gr,,ul).

6Several 0:2:2/I (i.e. tw,, d,,ublets. tw,, triplets - if t,,tal 7As defined in a user-specified opt imization-metrics list.
fl-atin-pint units - and 4 memry planes) NSC Nlinin,,des 8Eight candidale',,ptimizations' were attempted by the corn-
have been built a(Pricrein Univerity puler in this example.

l6

help determine an appropriate number and balance
of memory and computational resources in a node,
the PMP compiler was applied to various node con-
figurations, with the number of memory planes and Input code:
processors as primary parameters. An extensive in- 0.0
vestigation of memory-processor parameter space was _ -

performed. A suite of FORTRAN CFD test codes (in- \ /
cluding NAV3D, CRALE, and benchmarks such as the V
NAS kernels) were combined to yield over 104 source Input code:
lines. 104 discrete memory-processor combinations $3#4+$1#2$2#3+$t#2$2#3+$1#2$2#3+$1#2$2#3
and configurations were 'compiled' to the point ofgen- ALST2 triplet assignment:
erating optimal code and data storage. The PMPC $1#2 $23 $1#2 $2#3
ran the raw benchmark code at a rate of 400 - 2,000 $ 1 $ 2
lines per minute on a VAXstation 3100. The result -{
was the selection of a 4:8:4/16 processor node configu- _L_ _
ration which had a projected sustained performance in I I I
excess of 70% peak. The compiler output was checked I * I I *

extensively for this particular configuration, since it is I ------- I I -------
likely to be implemented in hardware. -----. --I-_-'-
4 Summary and Conclusions I

It is surprising that the minimal simulator, cou- + t
pled with small arbitrary input-data arrays, has ap- -------
parently led to reasonable good performance estimates I
and statistics. Thus far the data leading to this obser- ALST2
vation are empirical, and based on a limited experience
base. A sensitivity study of simulator is underway to Triplet used for: *+* ALST1 assignment:
address this result.

Although the PMPC is designed to support a num- $1#2 $2#3 $1#2 $2#3
ber of parallel architectures, the main target to date - I - - I_
has been a single NSC node. Given that the architec- I I I
ture of a node possesses both medium and fine granu- I * I *

larity, and requires extensive internal data decomposi- I ------- I I-------I
tion and and load-balancing among multiple (eg. 8-32) - -----
independent memory planes and multiple (eg. 16-64) - I __-
processors, it may be argued that the PMPC has been
demonstrated in a somewhat general, parallel environ- f + I
ment. The PMPC is currently being expanded to ac- - I
commodate multiple nodes with message-passing and I
direct-routing internode protocols. The main output ALST1
of the compiler is a pseudocode from which detailed
machine code may be, but thus far has not fully been, ALSD2 doublet assignment:
derived for direct execution on on hardware.
Acknowledgement ALST1 ALST2 $3#4
The author gratefully acknowledges the support of the - I-- I - I
Air Force Office of Scientific- Research in providing f I
Grant 91-0003 for the present work. +

References - I
[11] W.S. Flannery, "Architecture and Applications of

the Navier-Stokes Computer," Ph.D. Thesis. De- I
partment of Mechanical and Aerospace Engineer- +
ing, Princeton University, 1991. -------

121 M.E. Hayder, "The Navier-Stokes Computer," ALSD2
Ph.D. Thesis, Department of Mechanical and I-
Aerospace Engineering, Princeton University, \ /
1988. 1

[3) D.M. Nosenchuck, W.S. Flannery, M.E. Hay-
der, "A Navier-Stokes Computer," Special-Purpose Figure 1: ALS Pipeline For MIXM Baseline Subroutine
Computers, B. Alder, ed., pp 97 - 134, 1988.

7

